Seasonality of Arctic Black Carbon Processes in the AMAP Multi-Model Ensemble

R. Mahmood1,2, K. von Salzen3, M.G. Flanner4, M. Sand5, J. Langner6, H. Wang7, and L. Huang8

1School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
2Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, Pakistan
3Canadian Center for Climate Modelling and Analysis, Environment Canada, University of Victoria, Victoria, British Columbia, Canada
4Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Michigan, USA
5Center for International Climate and Environmental Research -Oslo (CICERO), Oslo, Norway
6Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
7Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
8Climate Chemistry Measurements and Research, Environment Canada, Toronto, Ontario, Canada
Model Simulations

• Models:
 – CanAM, CESM, NorESM, SMHI-MATCH

• All models use same:
 – anthropogenic emissions from ECLIPSE inventory, version 4a
 – monthly varying emissions for forest and grass fires from GFED, version 3.1
 – Simulation period (2006-2010), with specified sea surface temperatures, GHG concentrations, and volcanic forcings.

• For Vertical distribution of BC concentrations, the model data for year 2008 and 2009 is available on selected station locations.
Some insights from Eckhardt et al. (2015)

• Models generally captured the measured BC and sulfate concentrations quite well, compared to previous comparisons.

• Concentrations of BC and sulfate averaged over three surface sights are underestimated in winter/spring in all but one model (i.e. CanAM).

• Model mean BC (sulfate) underestimated by 59% (37%) for Jan-Mar and overestimated by 88% (44%) for Jul-Sep.

• BC and sulfate in Arctic probably have same origins.
Objectives of Current Study

- Explore the seasonality of BC burdens in AMAP models since it is directly relevant to radiative forcings.
- Investigate different BC processes in the models.
- Perform sensitivity analysis to understand the role of different aerosol processes in contributing to overall burden differences among the models.
Transport plays a major role in Arctic BC in models.

In summer, enhanced transport is caused by forest fires near ~60N.

Large differences in wet deposition rates.

The budgets do not fully explain the seasonal cycle of burdens especially in NorESM.

Black dots represent net source*5
Vertically integrated BC (250-10hPa)

- Large differences in the middle and upper troposphere.
- The large differences in burdens are related to the differences in process timescales.
Sensitivity Tests

- To understand some of the differences among the models we designed the following tests using CanAM and CESM:
 - **CONV_WD**: No convective aerosol removal
 - **STF_WD**: No wet scavenging (in layered clouds)
 - **DRYD**: No dry deposition
 - **CONV_TR**: No convective transport and convective wet deposition
 - **AGE**: No aging
• Both models produce BC burdens larger than control run.
• Strongest responses are for STF_WD, AGE and CONV_WD.
• CONV_TR causes modest changes relative to control run.
Current/Future Works

- Sensitivity tests to understand the role of local convection in the Arctic region in affecting vertical distribution of BC.
- Also working on expanding the current study on regional scales to understand aerosol processes and the radiative forcing when certain source regions are included/excluded in the CanAM model.
Thank You
1. Why wet deposition is stronger than control in sensitivity runs? Because of two types of wet depo.
2. 20% BC from fire emissions is hydrophic upon emissions and subject wet deposition in CanAM not in CESM
In general, models reproduce seasonal cycle, i.e. largest concentrations in winter and spring seasons and lowest in summer season.

However the magnitude is largely underestimated.

CanAM4 has much better simulation.

SMHI also has relative better representation of magnitudes in most polluted months.

Comparison between observed and simulated monthly mean BC concentrations. Solid lines are mean of 2008 and 2009 while dotted and dashed lines represent mean for 2006 to 2010.